If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14r^2-19r-40=0
a = 14; b = -19; c = -40;
Δ = b2-4ac
Δ = -192-4·14·(-40)
Δ = 2601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2601}=51$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-51}{2*14}=\frac{-32}{28} =-1+1/7 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+51}{2*14}=\frac{70}{28} =2+1/2 $
| 16x+36=80-80x | | 105+29+74+4x=180 | | -7x+8=3x-52 | | 70+110+14x23x-5=360 | | b-20=-20 | | h-(-15)=35 | | 5y/4=-5 | | 2=q-2/2 | | 8x=163.2 | | 10+2y-6=40 | | a/10=3 | | 5+5x=3x+101 | | n+3n+1=17 | | θ+2x=180 | | x+(-8)=0 | | 4m+6=43 | | -3(w-9)=3 | | 2x-15=5+× | | 4x^2-14x+42=0 | | –4p+7=3p | | –4p+7=–3p | | 10+144x=34 | | 7x+3=24 | | 8x-26=5x+10 | | 7a=-777 | | 2z+-3z=-2 | | 3x+3x=9+20 | | 30=6-3h | | 0.5x+22=28 | | -2/3x+4=18 | | 10(n+2)=140 | | 6k+27=3 |